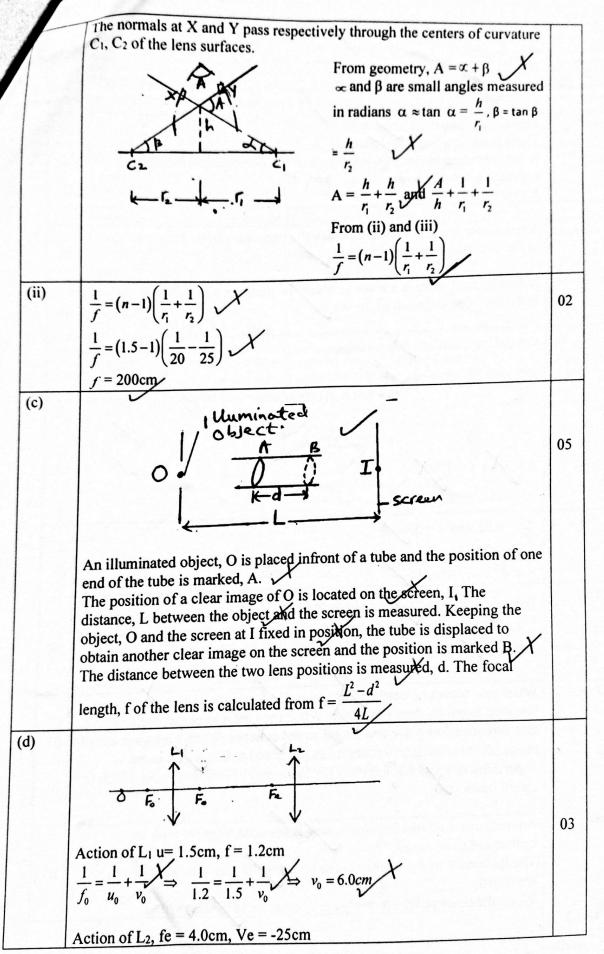
WAKISSHA JOINT MOCK EXAMINATIONS MARKING GUIDE


Uganda Advanced Certificate of Education

PHYSICS P510/2 July/August 2024

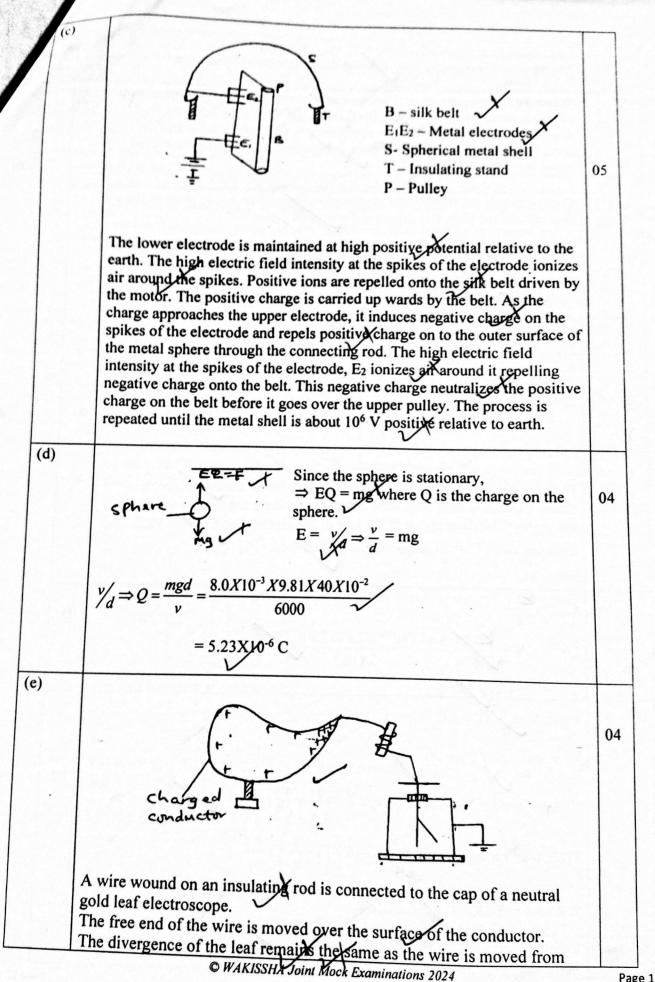
l(a)(i)	The incident ray, reflected ray and the normal at the point of incidence all	
	lie in the same plane.	
	- The angle of incidence is equal to the angle of reflection.	02
	I, I, Sal Glass	
(ii)	Reflection takes place at the two surfaces S ₁ and S ₂ . The reflection at the first surface at the point N leads to image I ₁ .	
	The transmitted light is reflected at the silvered surface at point N ₁ . It undergoes partial reflection and refraction at N ₂ . The refracted light appears to originate from I ₂ and this leads to formation of image I ₂ . The successive internal reflections and refractions lead to formation of other images.	04
(b)(i)	Action of mirror A $ \frac{1}{v} = \frac{1}{f} - \frac{1}{u} $	
	$= \frac{1}{20} - \frac{1}{30}$ V= 60cm	
	Action of mirror B	05
ν	VU = -10cm, $f = 15$ cm	03
	$\begin{vmatrix} \frac{1}{v} = \frac{1}{f} - \frac{1}{u} \\ = \frac{-1}{15} + \frac{1}{10} \\ V = 30 \text{cm} $	
(ii)	$M = m_A \times m_B$ $= \frac{60}{30} \times \frac{30}{10}$	02
	30 10 ¥ ≈6	

(c)	S2 Tu phonium Displace	
	emage screen	04
	The illuminated object is placed at a distance greater than the focal length of the lens and the apparatus are set as shown above. The screen S_2 is adjusted until a sharp image is formed on it. The distance x between L_1 and S_2 is measured. The convex mirror whose focal length is required is placed coaxially between L_1 and S_2 . The mirror is adjusted until a sharp image is focused on S_1 adjacent to the object. The distance y between L_1 and the mirror is measured. The focal length f is calculated from $f = \frac{x-y}{2}$	
(d)	With mirrors of wider aperture, both the central and marginal rays converge at different points on the principal axis forming a blurred image. Mirrors of small aperture only allow central rays which converge at one point on the principal is forming a sharp image.	03
	TOTAL 20 MARKS	
2(a)(i)	Refraction is the change in the direction of light as it travels from one medium into another.	01
(ii)	The incident ray, the refracted ray and the normal at the point of incidence all lie in the same plane. For two given media, the ratio of the sine of angle of incidence to the sine of angle of refraction is a constant.	
(b)(i)	Consider a ray originally parallel and close to the principal axis, incident on the lens at a small distance h above the principal axis.	
	Since d is small $d \approx \tan \theta = \frac{h}{4}$ (i) This is the deviation through a prism of small angle A formed by tangen at X and Y to the lens surfaces.	nts
	$d=(n-1)A$, $\frac{h}{f}=(n-1)A$, $\frac{1}{f}=\frac{A}{h}(n-1)$ (ii)	

	Y	
	$\frac{1}{f_e} = \frac{1}{u_e} + \frac{1}{v_e} \implies \frac{1}{4.0} = \frac{1}{u_e} - \frac{1}{25} \implies u_e = 3.45cm$	
۵)	Separation of lenses = $v_0 + u_c = 6.0 + 3.45 = 9.45$ gm	
(e)	There is no chromatic abertation There is no spherical abertation. Relatively cheaper since only one face of the objective needs grinding. Has high resolving power Forms brighter images.	02
	TOTAL = 20 MARKS	
3(a)(i)	A transverse wave is a wave in which the particles vibrate perpendicular to the direction of propagation of the wave.	01
	A longitudinal wave is a wave in which the particles vibrate along the direction of propagation of the wave	01
(b)	$y = 0.02\sin 2\pi (\text{ft } 3t - 0.02x) \text{ compare with}$	
	(x, y) compare with	
	$y = a \sin 2\pi \left(ft - \frac{x}{\lambda} \right) $ $y = 0.02 \sin 2\Pi (3t - 0.02x)$	02
(i)	$y = a\sin 2\Pi \left(f_t - \frac{x}{\lambda} \right)$	
	$ft = 3t \Rightarrow f = 3Hz \times$	
(ii)	$\frac{x}{\lambda} = 0.02 x \Rightarrow \lambda = 50 m$	
	$v = f\lambda$ $= 3 \times 50 = 150 \text{ms}^{-1}$ $= 2\pi \Delta x / 2\pi$	02
(iii)	$\Delta Q = \frac{2\pi\Delta x}{\sqrt{\lambda}} = \frac{2\pi}{50} \times \frac{25}{50} \times \frac{\pi}{1800}$ radians or 180°	
	$=\pi$ radios OR 1800	02
(c)(i)	When two waves of nearly equal frequencies and similar amplitudes are sounded together, they superpose. When they meet in phase, constructive interference takes place and a loud sound is heard. When they meet out of phase, destructive interference takes place and soft sound is heard. A periodic rise and fall intensity (or loudness) of sound is heard which is called beats.	03
(ii)	An instrument of standard frequency is sounded together with an	
	The frequency of the instrument to be turned is then adjusted until beats are heard.	0
(d)(i)	When the beats reduce to zero, the instrument is then thened.	
	Speed of car = 30ms ⁻¹	
		0

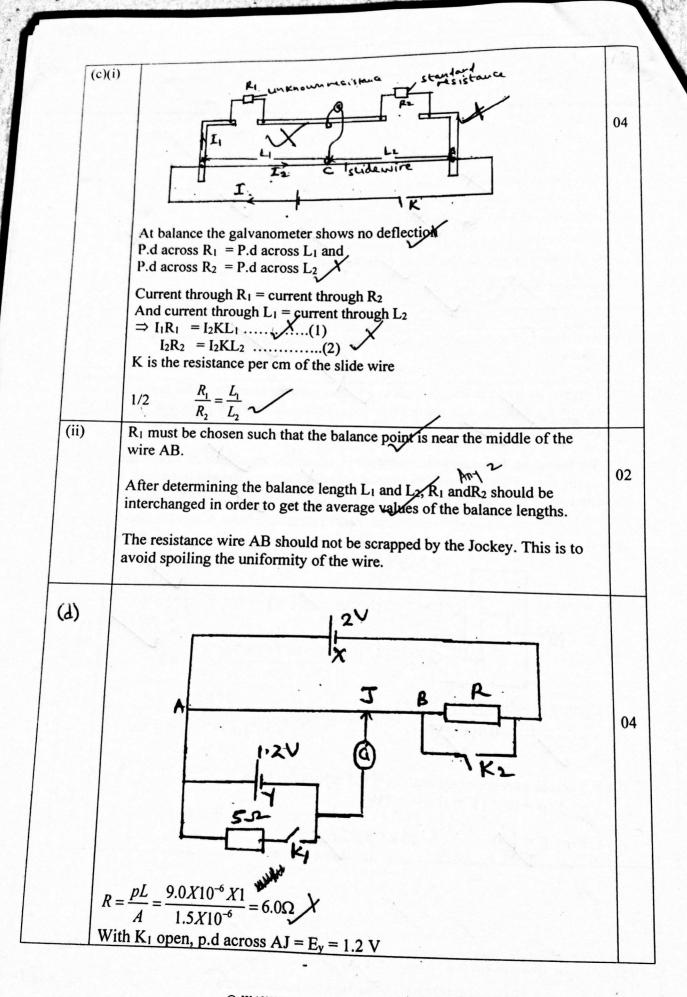
	Wave length of sound received by the stationary observer $\lambda_{\mu} = \frac{V - U_{\mu}}{f}$	
	Apparent frequency $f_a = \frac{V}{\lambda_a} = \left(\frac{V}{V - U_s}\right) f$	9.8
	$f_a = \frac{330X280}{330-30} = 308 \text{ Hz}$	
(ii)	Wave length received by the observer	
	$\lambda_a = \frac{V - U_s}{f}$	02
	Apparent velocity $v_a = V + U_o$	03
	Apparent frequency $f_a = \lambda_a = \frac{V_a}{\lambda_a} = \left(\frac{V + U_0}{V - U_s}\right) f$	
	$f_{\mathbf{a}} = \left(\frac{330 + 30}{330 - 30}\right) \times 280$	
	= 336Hz	
94 - November 1	TOTAL = 20 MARKS	
4(a)	Huygen's principle states that every point on a wave front may be regarded as a source of secondary wavelets and the new wave front is the envelope of the secondary wavelets.	01
	1 48	
	Incident -	
b (i)	material n perfected wave front	
	Consider a plane wave front of light AB which is about to cross from air	
	into a material. Let C and V be the velocities of light in air and material respectively.	
	If a wave particle at B takes time, t to move to B', then the distance BB'	Y
	ct in the same time, a wave particle A moves to A a distance An	04
	From triangles ABB¹ and AB¹A¹ A	04
	$\frac{\sin i}{\sin r} = \frac{BB^{1} / AB^{1}}{AA^{1} / AB^{1}} = \frac{BB^{1}}{AA^{1}} = \frac{ct}{vt} = \frac{c}{v}$	
	But $\frac{c}{v} = n \Longrightarrow v = \frac{c}{n}$	
11/1	Let fo and f be the frequencies of light in vacuum and in the medium	
`	respectively.	
	Then $f = f_0 \Rightarrow \frac{v}{\lambda} = \frac{c}{\lambda_0}$	0.3
	$\frac{\lambda_0}{\lambda} = \frac{\lambda_0}{\nu} = n$	
	λ ^ν ν	1
	$\Rightarrow \lambda = \frac{\lambda_0}{n} = \frac{600}{1.5}$	

(c)(i)	Plane polarized light is one whose electric vect or varies only one plane	01
	perpendicular to the direction of the light ray.	
It a	unpolarised y Eya polaroid Air	
	glass (medium)	
(ii)	A narrow beam of unpolarised light is directed onto a medium and the reflected light is viewed through a polaroid. Starting with a small angle of incidence, the polaroid is rotated about an axis through its plane. The angle of incidence is gradually increased where by at each angle of incidence the polaroid is rotated. At one angle of incidence, the reflected light gets cat off, from the observer as the polaroid is rotated. At this point, the reflected light is completely plane polarised	04
(d)	$\frac{n_g}{n_L} = \tan i_p \Rightarrow \frac{1.52}{1.33} = \tan i_p : i_p = 48.8^{\circ}$ $\Rightarrow r_p = 90 - 48.8 = 41.2^{\circ}$	04
(e)	The test slide is placed in contact with a standard flat slide to form an air wedge. Monochromatic light is directed almost normally onto the wedge and interference pattern formed are viewed from above. If regular fringes parallel to the line of contact is observed, the test slid is flat. Any areas showing irregular patterns correspond to the areas on the surface that are not flat.	03
	TOTAL 20 MARKS	
5(a)(i)	Magnetic flux density is the force experienced by a conductor of length 1m carrying a current of 1A placed perpendicular to the magnetic field.	01
X	OR Magnetic flux density is the force experienced by a charge of 1C moving with velocity 1ms ⁻¹ at right angles to the magnetic field.	
(ii)	The tesla is the magnetic flux density when the force on a conductor 1m long placed perpendicular to the magnetic field and carrying a current 1A is 1N.	01
(b)	I_1 P_1 P_2 P_3	04
	Consider two parallel conductors A and B above, carrying currents of I ₁ and I ₂ respectively. The magnetic flux density due to current I ₁ at P ₂ is B ₁	


$=\frac{N_0 I_1}{2 \prod d}$	T
The force acting per meter length on wire B is $F_1 = B_1 I_2 = \frac{N_0 I_1 I_2}{2 \prod d}$	
Similarly the magnetic flux density due to current I ₂ at P ₁ is B ₂ = $\frac{N_0 I_2}{2 \prod d}$	
The force per many due to current 12 at P ₁ is B ₂ = $\frac{0.2}{2 \prod d}$	
The force per metre length on wire A $E_{0} = P_{0}I_{0} - \frac{N_{0}I_{0}I_{0}}{N_{0}I_{0}I_{0}}$	
$F_2 = B_2 I_1 = \frac{N_0 I_2 I_1}{2 \prod d}$	
Force per metre length between A and b	
$F = F_1 = F_2 = \frac{N_0 I_1 I_2}{2 \prod d}$	
$(c)(i) \qquad \mathbf{P} = N_0 N I \qquad .$	01
$B = \frac{N_0 NI}{2r}$	01
(ii) Number of turns of the coil	
$N = \frac{8.0}{2\Pi r} = \frac{8.0}{2\Pi x 0.05}$	
Magnetic flux density at the centre of the coil	04
$NoNV = 4.0 \Pi X 10^{-7} X 2 X 8 0$	
$B = \frac{NoNV}{2\Pi r} = \frac{4.0 \Pi X 10^{-7} X 2 X 8.0}{2 X 0.05 X 2 \Pi X 0.05}$	
$= 6.40 \times 10^{4} T$	
(d) /	
manu tometer	
circular cont	
Elvenno coll	
K,	
The apparatus is arranged as shown above. The search coil is placed Lithe	
magnetic meridian such that the pointer of the magnetometer reads zero.	05
Switch is to closed and the pointer readings H. H. and the	
deflection is calculated from $\theta = \frac{\theta_1 + \theta_2}{2}$. If B _H and B _c are the earth's	
magnetic flux density and the magnetic flux density of the coil due to	
current respectively, then $\frac{B_c}{B_H} \tan \theta$	
Induced emf $E = BLV = B_vLV$	-
But $B_v = B_R \sin 40^\circ$	
$\Rightarrow E = B_R \sin 40^0 LV$	100
$E = E = 6.0 \times 10^{-3}$	04
$B_{\rm R} = \frac{1}{LV \sin 40^0} = \frac{20 \times 250 \sin 40^0}{20 \times 250 \sin 40^0}$	
$B_{R} = \frac{E}{LV \sin 40^{0}} = \frac{6.0X10^{-3}}{20X250 \sin 40^{0}}$ $= 1.87X10^{-6} \text{ T}$	

6(a)		
	Self-induction is the generation of emf in a coil due to changing current in the same coil.	01
	Mutual induction is the generation of emf in a circuit due to the changing current in a nearby coil / circuit	01
(b)(i)	An alternating voltage connected to the primary coil produces an alternating current in it. This sets up an alternating magnetic flux in the core which links the secondary coil thus induces an alternating emf in the secondary coil. The magnitude of the induced emf in the secondary coil is $Vs = NsA \frac{dB}{dt} \dots \dots (i)$ The changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the primary and induces a back are for the changing magnetic flux also links the changing magnetic flux also links the changing magnetic flux also l	05
	Thus $\frac{Vs}{Vp} = \frac{Ns}{Np}$ When Ns > Np, Vs > Vp and the transformer is a step up transformer.	
(ii)	 When Ns<np, a="" and="" is="" it="" li="" step-down="" transformer.<="" vs<vp=""> Ohmic loss minimized by the use of thick copper wire. Hysteresis, minimized by the use of a magnetically soft material. Magnetic Mux leakage, minimized by winding the secondary coil on the primary coil. Eddy currents, minimised by laminating the core. </np,>	04
(c)(i)	When the rod begins to move down wards, it cuts the magnetic field and current is induced in the circuit. Magnetic force comes into play which opposes the motion of the conductor. The force increases with the increase in speed. When the force becomes equal to the weight of the rod, the rod begins to move with the constant velocity.	03
(ii)	At steady speed $F = BJL = mg$ $I = \frac{V}{R} \sqrt{\frac{BLU}{R}}$ $U = \frac{B^2 L^2 U}{R} = mg$ $U = \frac{mgR}{B^2 L^2} \sqrt{\frac{BLU}{R}}$	03
1	$U = \frac{mgR}{B^2L^2} $	

Induced e.m.f E = 2 \prod fNBA sin 2 \prod ft Maximum e.m.f E ₀ = 2 \prod f NBA Maximum induced e.m.f thus increases with increase in frequency or angular velocity Number of turns of the coil. Area of the coil. Magnetic flux density		$= \frac{0.04X9.81X0.05}{0.3^2X0.6^2}$ $= 0.606 \text{ ms}^{-1}$	
	(d)	Maximum e.m.f E ₀ = 2 \prod f NBA Maximum induced e.m.f thus increases with increase in - frequency or angular velocity χ - Number of turns of the coil. χ - Area of the coil. χ	03


7(a)(i)	Peak value is the maximum value of the alternating current.	01
	Root mean square value is the value of steady/ direct current which dissipates heat in a given resistor at the same rate as the alternating current.	01
(b)	Instantaneous power dissipated $P = I^2R$ $P = I_0^2 \sin^2 2 \prod ftR $ $\langle P > \langle I_0^2 R \sin^2 2 \prod ft \rangle \rangle$ $= I_0^2 R \angle \sin^2 2 \prod ft \rangle$ But $\langle \sin^2 2 \prod ft \rangle = \frac{1}{2}$ $\langle P \rangle = \frac{1}{2} I_0^2 R $ Let Irms be the steady current that dissipates heat in the resistor at the same rate as the a.c then $\langle P \rangle = I^2 \text{rms } R$ $I^2 \text{rms } R = \frac{1}{2} I_0^2 R$	04
(a)	$I^{2}\text{rms} = \frac{I_{0}^{2}}{2}$ $I_{\text{rms}} = \frac{I_{0}}{\sqrt{2}}$	
(c)	Vrms = 20V, f= 80Hz, L = 0.6H Irms = $\frac{V_{rms}}{X_L} = \frac{V_{rms}}{2 \prod f} = \frac{20}{2X3.14X80X0.6}$ = 0.066A	03

(d)(i)	When the quite IV	
	When the switch K is closed, the bulb lights dimly and gradually increases to full brightness. When it is switched off, the bulb dims and gradually goes off.	02
(ii)	When the switch is closed, a large back a.m.f is induced, in the coil which opposes the flow of current in the circuit, very little current flows through the bulb hence dim light. The rate of change of current reduces gradually and the back e.m.f reduces to zero. leading to maximum current and the bulb lights to full brightness. When the switch is opened, the decaying magnetic field in the coil induces an e.m.f in the circuit which tends to reinforce the decaying current. The glow of the bulb reduces gradually and goes off.	04
(e)		
	Current to be measured is passed through the coil. The iron rods get magnetized in the same sense and repel. The movable iron rod is pushed away and as it moves, the pointer rotates over the scale until it is stopped by the restoring torque of the hair spring. The deflecting torque is proportional to the force of repulsion which is proportional to the square of the current. Hence the deflection $\theta \propto \angle I^2 >$	05
8(0)	TOTAL = 20 MADES	
8(a)	Electric field intensity is the force acting on 1C of positive charge at a point in an electric field. Electric potential is the work done to transfer 1C of positive charge from infinity to a point against the electrostatic field.	02
(b)	The divergence of the gold leaf electroscope gradually reduces. At the tip of the pin, there is high charge density thus high electric field intensity. The air around the pin gets ionized, ions of opposite charge to that on the	

one point to another on the surface of the conductor. The potential is constant over the pear shaped charged conductor. The potential is constant over the pear shaped charged conductor. When a neutral metal body is brought near a charged material opposite charge is induced on the near side of the metal that of the body on the far side. Since opposite charges are now close to each other the attraction force between the material is greater than the repulsion force. Hence the metal body is attracted. TOTAL = 20 MARKS 9(a)(i) Capacitance is the ratio of the magnitude of charge on either plate of the capacitor to the potential difference across its plates. (ii) $V = \frac{q}{4HEr} \approx \varepsilon = \frac{q}{4\Pi rv} \frac{8.0X10^{-10}}{4\Pi rv} \frac{4\Pi X0.11X60}{4\Pi rv} \frac{11X60}{4\Pi rv} \frac$	02
When a neutral metal body is brought near a charged material opposite charge is induced on the near side of the metal that of the body on the far side. Since opposite charges are now close to each other the attraction force between the material is greater than the repulsion force. Hence the metal body is attracted. 10	01
Plate B is charged and the divergence of the leaf of the electroscope is noted. Plate A is then displaced upwards to reduce the area of overlap of the plates. The divergence of the leaf of the electroscope is seen to increase since $C = \frac{q}{v}$, capacitance has reduced. ie	03
9(a)(i) Capacitance is the ratio of the magnitude of charge on either plate of the capacitor to the potential difference across its plates. (ii) $V = \frac{q}{4 \Pi \varepsilon_{\Gamma}} \Rightarrow \varepsilon = \frac{q}{4 \Pi r v} \frac{8.0 \times 10^{-10}}{4 \Pi x 0.11 \times 60}$ $= 9.65 \times 10^{-12} \text{ Fm}$ (b) Plate B is charged and the divergence of the leaf of the electroscope is noted. Plate A is then displaced upwards to reduce the area of overlap of the plates. The divergence of the leaf of the electroscope is accent to increase since $C = \frac{q}{v}$, capacitance has reduced. ie	03
$V = \frac{q}{4\Pi \mathcal{E}r} \Rightarrow \mathcal{E} = \frac{q}{4\Pi rv} \frac{8.0X10^{-10}}{4\Pi X0.11X60}$ $= 9.65X10^{-12} \text{ Fm}$ Plate B is charged and the divergence of the leaf of the electroscope is noted. Plate A is then displaced upwards to reduce the area of overlap of the plates. The divergence of the leaf of the electroscope is seen to increase since $C = \frac{q}{v}$, capacitance has reduced. ie	
Plate B is charged and the divergence of the leaf of the electroscope is noted. Plate A is then displaced upwards to reduce the area of overlap of the plates. The divergence of the leaf of the electroscope is seen to increase since $C = \frac{q}{\nu}$, capacitance has reduced. ie	04
Plate B is charged and the divergence of the leaf of the electroscope is noted. Plate A is then displaced upwards to reduce the area of overlap of the plates. The divergence of the leaf of the electroscope is seen to increase since $C = \frac{q}{v}$, capacitance has reduced. ie	04
noted. Plate A is then displaced upwards to reduce the area of overlap of the plates. The divergence of the leaf of the electroscope is seen to increase since $C = \frac{q}{v}$, capacitance has reduced. ie	
$C \propto A.$ $C = \frac{60A}{d}$ $Q = CV = \frac{60A}{d} = \frac{8.85X10^{-12}X2X10^{-4}X10,000}{2.000}$	
$C = \frac{60A}{d}$ $Q = CV = \frac{60A}{d} = \frac{8.85X10^{-12}X2X10^{-4}X10,000}{1000}$	
$Q = CV = \frac{60}{4} = \frac{8.85 \times 10^{-12} \times 2 \times 10^{-4} \times 10,000}{1.000}$	03
5X10 ⁻³	0.
$= 3.54 \times 10^{-9} \text{C}$	
$= 3.54 \times 10^{-9} C$ From $V = {}^{9}_{C}, C_{1} = \varepsilon_{r}C$ $C_{2} = C$	
$\Rightarrow V_1 = \frac{q}{\varepsilon c} \text{ and } V_2 = \frac{q}{c}$	
Change in pd = $V_2 - V_1 = \Rightarrow V_1 = \frac{q}{c} - \frac{q}{\varepsilon_r c} = \frac{q}{C} \left(1 - \frac{1}{\varepsilon_r} \right)$	(
Fractional change in pd = $\frac{V_2 - V_1}{V_1} = \frac{q}{c} \left(1 - \frac{1}{\varepsilon_r} \right) X \frac{\varepsilon_r c}{q}$	
$= \varepsilon_r \left(1 - \frac{1}{\varepsilon_r} \right) = \varepsilon_r - 1 $	
Relative permittivity is the ratio of permittivity of the material to	
permittivity of free space.	

(ii)	V	T
/	· · · · · · · · · · · · · · · · · · ·	
	6	
	A capacitor with air between the plates is connected as above. Switch K_1 is closed and after a short time it is opened. K_2 is closed and the first deflection θ_0 of B_1 is noted. K_2 is opened. The test dielectric is placed	05
	between the plates and k_1 is closed. After a short time K_1 is opened and k_2 is closed. The first deflection θ of B_1 C_1 is noted. Relative permittivity ε , is found from $\varepsilon_r = \frac{\theta}{\theta_0} c$	
10(a)(i)	Resistance of a conductor is the opposition to flow of ourrent through a conductor.	01
(ii)	Length: Increase in length leads to a longer path for electrons. This leads to more collisions with the material ions. This reduces the current and hence in resistance.	11/2
	Temperature: Increase in temperature increases the amplitude of vibration of the ions. This increases the rate of collision between the electrons and the ions. This reduces the amount of current flowing implying a higher resistance.	1 1/2
(b)	Effective resistance Rp = $\frac{300X150}{300+150}$ = 100Ω	
	Total resistance RT $= 100 + 600$ $= 700 \Omega$	04
	Current supplied by the battery $I = \frac{V}{Rr} = \frac{10}{700} = 0.0143 \text{ A}$	
	P.d across parallel combination = P.d across the bulb $Vp = IRp = 0.0143 \ X \ 100 = 1.43V$	
	Energy E = $\frac{V^2}{R}t = \frac{(1.43)^2}{150}X5 = 0.0682J$	1

D _e	$V_{\rm cm} = \frac{1.2V_{\rm cm}^{-1}}{\rm X}$	
lo	$Vem = \frac{1.2Vcm^{-1}}{75} \times $ $= \frac{2}{6+R} \times \frac{1}{2} p.d/cm = I_D R/cm = \frac{2}{6+R} \times \frac{6}{100} = \frac{12}{(6+R)100}$	
	$\frac{12}{(6+R)100} = \frac{1.2}{75} \Rightarrow R = \left(\frac{12X75}{120}\right) - 6.0$ = 1.5Qr	
	et the balance Length be L	
	Fith K ₁ closed, $I = \frac{E}{R+r} = \frac{1.2}{5+1} = 0.2A$ = IR = 0.2 X 5 = IV	02
p.	$d/cm = \frac{2}{100} V_{cm^{-1}} \times$	
p.	= IR = 0.2 X 5 = IV	The state of the s

END